Transparency and tunable slow and fast light in a nonlinear optomechanical cavity

نویسندگان

  • Ling Li
  • Wenjie Nie
  • Aixi Chen
چکیده

We investigate theoretically the optical response of the output field and the tunable slow and fast light in a nonlinear optomechanical cavity with a degenerate optical parametric amplifier (OPA) and a higher order excited atomic ensemble. Studies show that the higher-order-excitation atom which is similar to the degenerate OPA that acts as a nonlinear medium, induces an additional dip in absorption spectrum of the probe field. The coherence of the mechanical oscillator leads to split the peak in absorption in the probe field spectrum so that the phenomenon of optomechanically induced transparency (OMIT) is generated from the output probe field. In particular, the presence of nonlinearities with the degenerate OPA and the higher order excited atoms can affect significantly the width of the transparency windows, providing an additional flexibility for controlling optical properties. Furthermore, in the presence of the degenerate OPA, the optical-response properties for the probe field become phase-sensitive so that a tunable switch from slow to fast light can be realized.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Signatures of nonlinear cavity optomechanics in the weak coupling regime.

We identify signatures of the intrinsic nonlinear interaction between light and mechanical motion in cavity optomechanical systems. These signatures are observable even when the cavity linewidth exceeds the optomechanical coupling rate. A strong laser drive red detuned by twice the mechanical frequency from the cavity resonance frequency makes two-phonon processes resonant, which leads to a non...

متن کامل

All-Optically Controlled Quantum Memory for Light with a Cavity-Optomechanical System

Optomechanics may be viewed as a light-mechanics interface to realize hybrid structures for (classical or quantum) information processing, switching or storage. Using the two-laser technique, in this paper, we theoretically devise a protocol for quantum light memory via a cavity optomechanical system composed of a Fabry–Perot cavity and a mechanical resonator. Due to the long-lived mechanical r...

متن کامل

Design of a quasi-2D photonic crystal optomechanical cavity with tunable, large x2-coupling

We present the optical and mechanical design of a mechanically compliant quasitwo-dimensional photonic crystal cavity formed from thin-film silicon in which a pair of linear nanoscale slots are used to create two coupled high-Q optical resonances. The optical cavity supermodes, whose frequencies are designed to lie in the 1500 nm wavelength band, are shown to interact strongly with mechanical r...

متن کامل

Electromagnetically induced transparency and slow light in two-mode optomechanics.

We theoretically demonstrate the mechanically mediated electromagnetically induced transparency in a two-mode cavity optomechanical system, where two cavity modes are coupled to a common mechanical resonator. When the two cavity modes are driven on their respective red sidebands by two pump beams, a transparency window appears in the probe transmission spectrum due to destructive interference. ...

متن کامل

Tunable Bistability in Hybrid Bose-Einstein Condensate Optomechanics

Cavity-optomechanics, a rapidly developing area of research, has made a remarkable progress. A stunning manifestation of optomechanical phenomena is in exploiting the mechanical effects of light to couple the optical degree of freedom with mechanical degree of freedom. In this report, we investigate the controlled bistable dynamics of such hybrid optomechanical system composed of cigar-shaped B...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016